Learning Objectives

After completion of this exercise, the participant will be able to:
1. Discuss a “surgery first” approach for a Class III patient with a flat occlusal plane.
2. Describe a technique for bimaxillary retraction using skeletal anchorage.
3. Evaluate diagnostic considerations for upper-canine extraction in adult patients.
4. Compare systems for producing aligners using standard impressions vs. in-office intraoral scans.

Article 1

Villegas, C.; Janakiraman, N.; Uribe, F.; and Nanda, R.: Rotation of the Maxillomandibular Complex to Enhance Esthetics Using a “Surgery First” Approach (pp. 85-91)

1. A major difficulty in altering the occlusal plane is determining:
 a) a postsurgical center of rotation
 b) the final positions of the maxillary incisors
 c) the likely effects of the paranasal anatomy
 d) the influence of the patient’s chin prominence on the profile
2. In the patient presented here, rotation of the occlusal plane resulted in:
 a) increased maxillary incisor labial inclination
 b) increased mandibular incisor labial inclination
 c) improvement of the smile arc
 d) both a and c
3. The authors chose a treatment plan that would alter the patient’s occlusal plane because simple maxillary advancement along the occlusal plane would not have resolved:
 a) the Class III occlusion
 b) the paranasal deficiency
 c) the labial inclination of the maxillary incisors
 d) both b and c
4. Advantages of the “surgery first” approach include all of the following except:
 a) increased postsurgical bone turnover may accelerate tooth movement
 b) the patient experiences immediate esthetic improvement
 c) orthodontic treatment can be initiated immediately after surgery
 d) root resorption is of less concern due to a shorter orthodontic phase

Article 2

Paik, C.H.; Seo, Y.J.; and Baek, S.H.: A Minimally Invasive Modality for Simultaneous Bimaxillary En Masse Retraction (pp. 92-101)

5. The authors developed their minimally invasive modality for simultaneous bimaxillary en masse retraction (MIM-SBEMR) specifically for:
 a) mutilated-dentition cases
 b) borderline extraction cases
 c) patients who are averse to surgery
 d) patients in the mixed dentition
6. For skeletal anchorage, the MIM-SBEMR technique uses:
 a) a single palatal mini-implant
 b) two buccal mini-implants in the upper arch
 c) two mini-implants in the tuberosity
 d) two buccal mini-implants in the lower arch
7. In the MIM-SBEMR technique, third molars are usually extracted:
12. Unilateral replacement of an upper canine with a first premolar:
 a) may necessitate esthetic treatment with veneers or selective whitening
 b) is not advisable due to esthetic concerns
 c) is not advisable due to functional concerns
 d) both b and c

Article 4

Garino, F. and Garino, B.: *The iOC Intraoral Scanner and Invisalign: A New Paradigm* (pp. 115-121)

13. In-office digital records from the iOC scanner can be used to produce:
 a) an Invisalign treatment plan
 b) a virtual ClinCheck setup
 c) the physical aligners
 d) all of the above

14. Compared to the procedure for standard digital records, scans for Invisalign cases require:
 a) considerably less scanning time
 b) considerably more scanning time
 c) more attention to interdental contact points
 d) a “continuous” scanning mode

15. The first quality check of the patient’s scan is performed:
 a) by the clinician, during treatment planning
 b) by Align technicians, after the initial scan is submitted
 c) by the clinician, after the first ClinCheck is received
 d) by the iOC scanning software, immediately after completion of the scan

16. Advantages of the iOC scanner in Invisalign treatment include all of the following except:
 a) conventional polyvinyl siloxane (PVS) or alginate impressions are no longer needed
 b) the operator is immediately informed of areas needing more detailed scanning data
 c) once the scan is submitted to Align Technology, no additional scanning is required
 d) intraoral scanning can produce more detailed and accurate data than can be gathered from PVS or alginate impressions